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The Problem

» Short run Effects of Monetary Policy Shocks

> persistent effects on real variables
> slow adjustment of aggregate price level
> liquidity effect

» Micro Evidence on Price-setting Behaviour: significant price
and wage rigidities

» Failure of Classical Monetary Models



The Evidence

Figure 1. Estimated Dynamic Response to a Monetary Policy Shock
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Source: Christiano, Eichenbaum and Evans (1999)



The Evidence
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The Evidence: South Africa
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Figure 2. Interest Rate Shock
(deviations from control)
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Why New Keynesian?

» Real Rigidities - Monopolistic Competition
» Nominal Rigidities - Calvo Pricing
» But with Microfundations

» Method RBC literature (Dynamic Stochastic General
Equlibrium)
» Explain Persistence and Demand Shocks



The Basic Macro Structure

The Basic Structure of DSGE Models
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Figure 1. The basic structure of DSGE models. Source: Sbordone et al. (2010)



The Simple Macro Structure

Supply (NK Phillips Curve)

T = BE: 1 +ay: + &
Demand (NK'IS)

Ve = Etyerr — 7 (it — Eemteqn) + ¢
Monetary Policy Rule (Taylor Rule)

it =T+ ¢ (e — 7))+, (yr)



Where Do They Come From?

Ty = BEt 1 + oy + € (4)

Derived from optimal pricing behaviour of the firm with market
power and nominal stickiness (Calvo Pricing)

Ve = Eryerr — 7 (ie — Ee7teq1) + 17, (5)

Directly from the first order condition of the consumer and
equilibrium conditions

it =Te+ ¢ (me —70°) + ¢, (ve) (6)
Monetary policy reaction function
Note:
» There is no need of having an LM (no explicit money)

» Both 71; and y; are jumping variables (function of
expectations of future state variables)



Consumer Problem
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Consumer Problem

Optimal Allocation of Consumption Expenditure

subject to

Optimal Allocation

(11)



Consumer Problem

Optimal Dynamic Consumption/Leisure Decision

E I t+1 t+1
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Consumer Problem

Optimal Dynamic Consumption/Leisure Decision
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Consumer Problem

Optimal Dynamic Consumption/Leisure Decision

Rearranging and using condition (18) to eliminate the Lagrange
multiplier, we get:

= G (21)
Py
P
t+i

As shown before, this implies the following log linear relationships

Wy — Py = O'Ct—i_f?nt (23)
1 .
G = Et{ct—‘r].}_g{lt_Etnt:l —lnﬁ} (24)



Firm Problem
Calvo Pricing

> A firm may change price of its product only when Calvo Fairy
visits.

» The probability of a visit is (1 — )

> It is independent of the length of the time and the time
elapsed since the last adjustment. Hence, in each period the
(1 —0) share of firms

» may change their price and rest, 8, keep their price unchanged.

» Mathematically, Calvo Fairy's visits follows Bernoulli process
(discrete version of Poisson process).

» The probability distribution of the number of periods between
the visits of Calvo Fairy is geometric distribution.

» The expected value of geometric distribution and, hence, the
average number of periods between the price changes (of a
firm) is



Firm Problem

Calvo Pricing

Price Stickiness: Firms can change prices with a probability (1 —6)
Price Decision - Intertemporal
Problem of the Firm (when they can change the prices)
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m|nL (z2)=)_ (0 —pf+k)2 (25)
k=0
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Reset Price

ze = (1—0B) p; + 0BEcze11
where

(oo}

Eezes1 =) (68)" Ee (pfi14x)
k=0

"frictionless optimal” price p*.

p; = u+ mc

Thus the reset price can be written as:

ze = (1=0B) (u+ mecey) + (1= 0B) Erze s

(30)



Aggregate Pricing

p: = 0pi—1+ (1 —0) z (33)
This can be rearranged as

1

Zr = 1-9 (Pt - 9Pt71) (34)
1 0B
1-0 (Pt —Opt—1) = 10 (pt+1—0pt) + (1 —0B) (u + mce)
this equation implies:
1—-0
M = Presr + —5— (1= 0B) (4 + mce — pt) (35)

0



New Keynesian Phillips Curve

Denoting mc: = y + mc: — pr

1-6 _
T = BTt + 0 (1—-0p) mc,

mec; = Ayt

Ty = BTTey1 + Yyt

where

7:A(1—9)9(1—9/3)

(36)

(37)



Inflation as an Asset Price

Solving Forward the New Keynesian Phillips curve (as for the
Cagan Model)

=7y B“Etyer
k=0

Problems

> Not enough dynamic in the model
» Any change will be reflected instantaneously on the variables

» Many attempts to produce more slugghish response (will see
later)



System Stability

Ty = ﬁEtnt+1+a}/t+€t

vi = Eyry1— (e — Emeqn) + e

iv = It + ¢, (e —7T%) + ‘Py (e)
Where ¢, 4)y > 0.



System Stability

State Space Representation

Substituting the general (40) now in the above system can be
written in state-space form:

Eizip1 = Axzy + Bx 1" + Kugy g

Where,Z/tZ[ﬁt yt],UQZ[St up 7t]and

1 _a
Stability of the system eigenvalues of matrix A outside the unit
circle (Blanchard and Kahn, 1980).



System Stability

Stability Condition

This implies the following conditions

j:\/tr 2 _ 4det(A)

>1

which, given our parameter restrictions and the nature of the
problem, reduces to the following three conditions (See Woodford
2003 for detailed derivation)

det(A) > 0, det(A) — tr(A) > —1, det(A) + tr(A) > —1



System Stability

Stability Condition

Necessary Condition For Stability

<1_5><py+¢n>1 (41)

o

Sufficient Condition
¢, >1 (42)
Taylor Rule: for the system to be stable the CB should react with

an elasticity of interest rate relative to inflation greater than one
(Taylor proposed ¢ = 1.5 and ¢, = 0.5)



