// FILENAME: ifs1.mod: Dynare program for positive production technology // and monetary policy shocks %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % % Essays on the Monetary Economics of Low Income Countries % % % % Essay Number 2: The Interaction of formal and Informal Financial Markets% % in Quasi-Emerging Market Economies % % % % Harold P.E. Ngalawa % % % % School of Economics, University of cape Town % % % % February 2010 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %-------------------------------------------------------------------------- % 0. Housekeeping (close graphics windows) %-------------------------------------------------------------------------- close all; %-------------------------------------------------------------------------- % 1. Set simulation periods %-------------------------------------------------------------------------- periods 5000; %-------------------------------------------------------------------------- % 2. Define variables % Endogenous (var) and exogenous (varexo) %-------------------------------------------------------------------------- var A C epie K Lf Li M N P Rrr Rdf Rlf Rli Rnr varpi W Y; //A : Technology factor //C : Consumption //epie : expected inflation //K : Capital stock //Lf : Formal financial sector loans //Li : Informal financial sector loans //M : Money supply //N : Labour supply/demand //P : Price level //Rrr : Real interest rates //Rdf : Commercial bank deposit rates //Rlf : Commercial bank base lending rates //Rli : Informal financial sector lending rates //Rnr : Bank rate //varpi : Proportion of aggregate demand for FFS loans that succeeeds in // getting the FFS loans //W : Wage rate //Y : Output varexo eA mu; //eA : Technology shock //mu : Monetary policy shock %-------------------------------------------------------------------------- % 3. Define parameters and assign parameter values %-------------------------------------------------------------------------- parameters alpha beta delta eta gamma kyu phi psi rho vah val zeta chi1 chi2; %-------------------------------------------------------------------------- % 4. Calibration %-------------------------------------------------------------------------- //The first five are determined from the literature alpha = 0.37; //Share of capital in production function beta = 0.99; //discount rate delta = 1; //depreciation eta = 0.91; //autoregressive parameter shock phi = 3; //utility function; leisure parameter //The next nine are calibrated gamma = 3; //weight on real money balances kyu = 0.85; //Probability of IFS loan repayment psi = 0.8; //lagrangian multiplier in a firm's cost minimisation function rho = 0.15; //proportion of high risk borrowers vah = 0.8; //risk factor for high risk borrowers (substitution factor of FFSL and IFSL) val = 0.95; //risk factor (probability of success) for low risk individuals zeta = 0.1; //mark-up over the bank rate to obtain the base lending rate chi1 = 0.98; //factor of inertia in the base lending rate chi2 = 0.3; //weight of expected change in output in the monetary policy rule %-------------------------------------------------------------------------- % 5. Model %-------------------------------------------------------------------------- model; 1/C = beta*(1+Rdf)*(1/C(+1)); //1-intertemporal consumption function N = 1-((phi*C)/W); //2-labour supply equation M = P*gamma*beta*((C(+1))/Rdf); //3-money demand function 1 + Rdf = (1 + Rli)*kyu; //4-equilibrium position of a household's financial portfolio K = ((rho*vah(-1))+((1-rho)*val(-1)))*(Lf(-1)+Li(-1)); //5-aggregate capital stock equation Y = exp(A)*(K^alpha)*(N^(1-alpha)); //6-production function A = eta*A(-1) + eA; //7-equation describing evolution of technology factor W =(1-alpha)*psi*(Y/N); //8-wage equation Lf = (varpi/vah)*((((1-alpha)*(1+Rlf)*(K(+1)^alpha))/ (alpha*vah*W(+1)*N(+1)))^(1/(alpha-1))); //9-FFS loans supply Li = (2-varpi)*(((rho/vah)*((1/vah)^(1/(alpha-1))))+ (((1-rho)/val)*((1/val)^(1/(alpha-1)))))* ((((1-alpha)*(1+Rli)*kyu*(K(+1)^alpha))/(alpha*W(+1)*N(+1)))^(1/(alpha-1))); //10-IFS loans supply varpi*Rlf = Rnr; //11-proportion of demand for FFS loans that succeeds in getting the loans Rlf = Rnr + zeta; //12-base lending rate Rrr = alpha*exp(A(+1))*(K(+1)^(alpha-1))*(N(+1)^(1-alpha)); //13-real interest rate Y = C + K(+1)-(1-delta)*K; //14-income accounting identity Rnr = chi1*Rrr+chi2*(Y(+1)-Y)+(1-chi2)*epie+mu; //14-monetary policy rule epie=Rnr(+1)-Rrr(+1); //15-Expected inflation P*C = M; //16-post-equilibrium identity end; initval; C = 0.8; K = 0.2; N = 0.3; Rdf = 0.075; varpi = 0.7; W = 0.3; end; shocks; var eA; stderr 0.25; var mu; stderr 0.25; end; check; steady; stoch_simul(hp_filter = 1600, order = 1, IRF=40);