Macroeconomics

Review of Growth Theory Solow and the Rest

Basic Neoclassical Growth Model

- exogenous population (labor) growth rate *n*
- saving rate: exogenous or derived via dynamic (= intertemporal) optimization (rate of time preference)

• gY = n and gy = 0

Effect of Technological Progress

- exogenous, disembodied, factor augmenting technological progress
- technological progress does not consume any resources but is "produced by time" (like manna from heaven)
- gY = n + gA and gy = gA

Human Capital: Learning-by-Doing / AK Model

- labor augmenting technological progress with capital stock as a proxy for accumulated experience (know-how)
- growth engine: production becomes proportional to capital stock (no more diminishing returns to scale!)
- steady-state growth rate influenced by: saving rate (rate of time preference), country size, technology
- know-how as a public good (externality)
 ⇒ inefficient steady-state growth rate
 ⇒ suggests public subsidies for investments

Human Capital Accumulation

- labor-embodied know-how
- growth engine: no diminishing returns to scale in human capital formation ($\Delta H \sim H$)
- steady-state growth rate influenced by: saving rate, productivity of the education sector
- efficient steady-state growth rate (optimal allocation of resources via market processes)

Producing Technological Progress via Research & Development

Producing Technological Progress via Research & Development

- reasearch done by rational, profit-maximizing agents
- (old) idea: growth is sustained by increased specialization of labor
- incentives to innovate (monopoly profits) stem from imperfect competition in the intermediate sector (patent protection)
- growth engine: spillovers and specialized capital
- steady-state growth rate influenced by:
 - productivity in the R&D-sector
 - stock of human capital
 - saving rate
 - productivity in the final goods sector (negative!)
- inefficient steady-state growth rate (too low) due to spillover-externalities

Models of Economic Growth

• Neoclassical growth models

• Endogenous growth models

Neoclassical growth model

- Model growth of GDP per worker via capital accumulation
- Key elements:
 - Production function (GDP depends on technology, labour and physical capital)
 - Capital accumulation equation (change in net capital stock equals gross investment [=savings] less depreciation).
- Questions:
 - how does capital accumulation (net investment) affect growth?
 - what is role of savings, depreciation and population growth?
 - what is role of technology?

Solow-Swan equations

Y = Af(K, L) (production function)

Y = GDP, A = technology,

K = capital, L = labour

 $\frac{dK}{dt} = sY - \delta K \quad \text{(capital accumulation equation)}$

s = proportion of GDP saved (0 < s < 1)

 δ = depreciation rate (as proportion) (0 < δ < 1)

Solow-Swan analyse how these two equations interact.

Y and K are endogenous variables; s, δ and growth rate of L and/or A are exogenous (parameters).

Outcome depends on the **exact** functional form of production function and parameter values.

Neoclassical production functions

Solow-Swan assume:

- a) diminishing returns to capital or labour (the 'law' of diminishing returns), and
- b) constant returns to scale (e.g. doubling *K* and *L*, doubles *Y*).

For example, the Cobb-Douglas production function

$$Y = AK^{\alpha}L^{1-\alpha} \quad \text{where } 0 < \alpha < 1$$
$$y = \frac{Y}{L} = \frac{AK^{\alpha}L^{1-\alpha}}{L} = \frac{AK^{\alpha}}{L^{\alpha}} = A\left(\frac{K}{L}\right)^{\alpha} = Ak^{\alpha}$$

Hence, now have y = output (GDP) per worker as function of capital to labour ratio (k)

GDP per worker and k

Assume A and L constant (no technology growth or labour force growth)

Accumulation equation

If A and L constant, can show*

$$\frac{dk}{dt} = sy - \delta k$$

This is a differential equation. In words, the change in capital to labour ratio over time = investment (saving) per worker <u>minus</u> depreciation per worker.

Any positive change in k will increase y and generate economic growth. Growth will stop if dk/dt=0.

*accumulation equation is: $\frac{dK}{dt} = sY - \delta K$, divide by L yields $\frac{dK}{dt} / L = sy - \delta k$ Also note that, $\frac{dk}{dt} = d\left(\frac{K}{L}\right) / dt = \frac{dK}{dt} / L$ since L is a constant.

Graphical analysis of

dk $-=sy-\delta k$ dt

(Note: s and δ constants)

growth.

What happens if savings increased?

- raising saving increases k* and y*, but long run growth still zero (e.g. s₁>s₀ below)
- call this a "levels effect"
- growth increases in short run (as economy moves to new steady state), but no permanent 'growth effect'.

Analysis in growth rates

Can illustrate above with graph of g_k and k

$$\frac{dk}{dt} = sy - (\delta + n)k \implies \frac{dk}{dt} = g_k = s\frac{y}{k} - (\delta + n)$$

Golden rule

- The 'golden rule' is the 'optimal' saving rate (s_G) that maximises consumption per head.
- Assume A is constant, but population growth is n.
- Can show that this occurs where the marginal product of capital equals $(\delta + n)$

Proof:
$$\frac{dk}{dt} = sy - (\delta + n)k = 0$$
 at steady state,
hence $sy* = (\delta + n)k*$, where * indicates steady state equilibrium value
The problem is to: $\max_{k} c = y - sy = y* - (\delta + n)k*$
First order condition : $0 = \frac{dy*}{dk*} - (\delta + n)$ hence $MP_{k} = \frac{dy*}{dk*} = \delta + n$

Graphically find the maximal distance between two lines

Economies can **over save**. Higher saving does increase GDP per worker, but real objective is consumption per worker.

Golden rule for Cobb Douglas case

- $Y = K^{\alpha} L^{1-\alpha}$ or $y = k^{\alpha}$
- Golden rule states: $MP_k = \alpha(k^*)^{\alpha-1} = (n + \delta)$
- Steady state is where: $sy^* = (\delta + n)k^*$
- Hence, $sy^* = [\alpha(k^*)^{\alpha-1}]k^*$

or
$$s = \alpha(k^*)^{\alpha} / y^* = \alpha$$

Golden rule saving ratio = α for Y=K $^{\alpha}L^{1-\alpha}$ case

Solow's surprise*

- Solow's model states that investment in capital cannot drive long run growth in GDP per worker
- Need technological change (growth in A) to avoid diminishing returns to capital
- Easterly (2001) argues that "capital fundamentalism" view widely held in World Bank/IMF from 60s to 90s, despite lessons of Solow model
- Policy lesson: don't advise poor countries to invest without due regard for technology and incentives

What if technology (A) grows?

- Consider y=Ak^α, and sy=sAk^α, these imply that output can go on increasing.
- Consider marginal product of capital (MP_k) MP_k=dy/dk = $\alpha A k^{\alpha-1}$,
- if A increases then MP_k can keep increasing (no 'diminishing returns' to capital)
- implies positive long run growth

.... graphically, the production function simply shifts up

.... mathematically

Easier to use $Y = K^{\alpha} (AL)^{1-\alpha}$ where $0 < \alpha < 1$ (This assumes A augments labour (Harrod-neutral technological change) Can re-write $K^{\alpha} (AL)^{1-\alpha} = A^{1-\alpha} K^{\alpha} L^{1-\alpha}$ Assume $\frac{dA}{dt} / A = g_A$ (for reference this same as $A_t = A_o e^{g_A t}$)

Trick to solving is to re-write as

$$\tilde{y} = \frac{Y}{AL} = \frac{K^{\alpha} (AL)^{1-\alpha}}{AL} = \left(\frac{K}{AL}\right)^{\alpha} = (\tilde{k})^{\alpha}$$

where \tilde{y} =output per 'effective worker', and \tilde{k} = capital per 'effective worker' Can show $\frac{d\tilde{k}}{dt}/\tilde{k} = s(\tilde{k})^{\alpha} - (n+a+\delta)\tilde{k}$

This can be solved (plotted) as in simpler Solow model.

Output (capital) per effective worker diagram

If Y/AL is a constant, the growth of Y must equal the growth rate of L plus growth rate of A (i.e. n+a)

And, growth in GDP per worker must equal growth in A.

Summary of Solow-Swan

- Solow-Swan, or neoclassical, growth model, implies countries converge to steady state GDP per worker (if <u>no growth</u> in technology)
- if countries have same steady states, poorer countries grow faster and 'converge'
 - call this classical convergence or 'convergence to steady state in Solow model'
- changes in savings ratio causes "level effect", but no long run growth effect
- higher labour force growth, ceteris paribus, implies lower GDP per worker
- Golden rule: economies can over- or under-save (note: can model savings as endogenous)

Technicalities of Solow-Swan

- Textbooks (Jones 1998, and Carlin and Soskice 2006) give full treatment, in short:
- Inada conditions needed ("growth will start, growth will stop") $\lim_{K \to \infty} \frac{dY}{dK} = 0, \quad \lim_{K \to 0} \frac{dY}{dK} = \infty,$
- It is possible to have production function where dY/dK declines to positive constant (so growth declines but never reaches zero)
- Exact outcome of Solow model does depend on precise functional forms and parameter values
- BUT, with standard production function (Cobb-Douglas) Solow model predicts economy moves to steady state because of diminishing returns to capital (assuming no growth in technology A)

Endnotes

Math note 1: $y_t = y_0 e^{gt}$ can be used to analyse impact of growth over time Let y=GDP p.w., g=growth (e.g. $0.02 \equiv 2\%$), t=time. Hence, for g = 0.02 and t = 100, $y_t / y_0 = e^2 = 7.39$

Math Note 2:
Start with
$$\frac{dK}{dt} = sY - \delta K$$
, divide by L yields $\frac{dK}{dt}/L = sy - \delta k$
Note that $\frac{dk}{dt} = d\left(\frac{K}{L}\right)/dt = \left[\frac{dK}{dt}L - \frac{dL}{dt}K\right]/L^2$ (quotient rule)
simplify to $\frac{dK}{dt}/L - \left(\frac{dL}{dt}/L\right)\frac{K}{L}$ or $\frac{dK}{dt}/L - nk$ (since n is labour growth and $K/L = k$)
hence $\frac{dk}{dt} + nk = \frac{dK}{dt}/L = sy - \delta k$
hence $\frac{dk}{dt} = sy - (\delta + n)k$

Questions for discussion

- What is the importance of diminishing marginal returns in the neoclassical model? How do other models deal with the possibility of diminishing returns?
- 2. Explain the effect of (i) an increase in savings ratio (ii) a rise in population growth and (iii) an increase in exogenous technology growth in the neoclassical model.
- 3. What is the golden rule? Can you think of any countries that have broken the golden rule?

Growth accounting

$$Y_t = B_t K_t^{\alpha} L_t^{1-\alpha} \Rightarrow$$

$$\ln Y_T = \ln B_T + \alpha \ln K_T + (1-\alpha) \ln L_T \text{ and}$$

$$\ln Y_t = \ln B_t + \alpha \ln K_t + (1-\alpha) \ln L_t \Rightarrow$$

$$\frac{\ln Y_T - \ln Y_t}{T-t} = \frac{\ln B_T - \ln B_t}{T-t} + \alpha \frac{\ln K_T - \ln K_t}{T-t} + (1-\alpha) \frac{\ln L_T - \ln L_t}{T-t} \Leftrightarrow$$

$$g_{T,t}^Y = g_{T,t}^B + g_{T,t}^K + (1-\alpha) g_{T,t}^L.$$

- With data for Y_{τ}, K_{τ} and $L_{\tau}, \tau = t, T$ and with $\alpha = 1/3$ we can compute $g_{T,t}^{B}$ as a residual. We call this the **Solow residual**.
- Why not growth accounting in levels?

Growth accounting per capita

$$Y_t = B_t K_t^{\alpha} L_t^{1-\alpha} \Longrightarrow y_t = B_t k_t^{\alpha}$$

 $\ln y_T = \ln B_T + \alpha \ln k_T$ and $\ln y_t = \ln B_t + \alpha \ln k_t \Rightarrow$

$$\frac{\ln y_T - \ln y_t}{T - t} = \frac{\ln B_T - \ln B_t}{T - t} + \alpha \frac{\ln k_T - \ln k_t}{T - t} \Leftrightarrow$$

$$g_{T,t}^{y} = g_{T,t}^{B} + g_{T,t}^{k}$$

- With data for y_{τ} and k_{τ} and with $\alpha = 1/3$ we can once more compute the Solow residual, $g_{T,t}^{B}$.
- We can use this residual to check the underlying "technological growth"

Growth Accounting in South Africa

Number	Period	Output growth	Capital contribution	Labour contribution	TFP
Without Human	1985-1994	0.8	0.45	0.63	-0.28
Capital	1995-2004	3.0	0.62	0.62	1.76
Labor adjusted by	1985-1994	0.8	0.45	1.11	-0.76
years of schooling	1995-2004	3.0	0.62	0.88	1.50
Labor adjusted	1985-1994	0.8	0.45	1.49	-1.14
by skill level	1995-2004	3.0	0.62	0.95	1.43

Endogenous Growth Models

Endogenous growth models - topics

- Recap on growth of technology (A) in Solow model (....does allow long run growth)
- Endogenous growth models
- Non-diminishing returns to 'capital'
- Role of human capital
- Creative destruction models
- Competition and growth
- Scale effects on growth

Exogenous technology growth

- Solow (and Swan) models show that technological change drives growth
- But growth of technology is not determined within the model (it is **exogenous**)
- Note that it does <u>not</u> show that capital investment is unimportant ($A^{\uparrow} \Rightarrow \uparrow y$ and $\uparrow MP_k$, hence $\uparrow k$)
- In words better technology raises output, but also creates new capital investment opportunities
- Endogenous growth models try to make **endogenous** the driving force(s) of growth
- Can be technology or other factors like learning by workers

The AK model

- The '*AK* model' is sometimes termed an 'endogenous growth model'
- The model has *Y* = *AK* where *K* can be thought of as some composite 'capital and labour' input
- Clearly this has constant marginal product of capital (MP_k = dY/dK=A), hence long run growth is possible
- Thus, the 'AK model' is a simple way of illustrating endogenous growth concept
- However, it is very simple! 'A' is poorly defined, yet critical to growth rate
- Also composite 'K' is unappealing

The AK model in a diagram

Endogenous technology growth

• Suppose that technology depends on past investment (i.e. the process of investment generates new ideas, knowledge and learning).

 $A = g(K) \quad \text{where} \quad \frac{dA}{dK} > 0$ Specifically, let $A = K^{\beta} \qquad \beta > 0$ Cobb-Douglas production function $Y = AK^{\alpha}L^{1-\alpha} = [K^{\beta}]K^{\alpha}L^{1-\alpha} = K^{\alpha+\beta}L^{1-\alpha}$

If α + β = 1 then marginal product of capital is constant (dY/dK = L^{1- α}).

- Assuming A=g(K) is Ken Arrow's (1962) learning-bydoing paper
- Intuition is that learning about technology prevents marginal product declining

"Growth of capital"

capital per worker k=K/L

Increasing returns to scale

$$Y = K^{\alpha + \beta} L^{1 - \alpha} \quad \text{with } \alpha + \beta = 1$$

- "Problem" with $Y = K^1 L^{1-\alpha}$ is that it exhibits **increasing returns to scale** (doubling *K* and *L*, more than doubles *Y*)
- IRS ⇒ large firms dominate, no perfect competition (no P=MC, no first welfare theorem,)
- solution, assume feedback from investment to *A* is <u>external</u> to firms (note this is positive externality, or spillover, from microeconomics)

Knowledge externalities

A firm's production function is $Y_i = A_i K_i^{\alpha} L_i^{1-\alpha}$ but A_i depends on aggregate capital (hence firm does not 'control' increasing returns)

- Romer (1986) paper formally proves such a model has a competitive equilibrium
- However, the importance of <u>externalities</u> in knowledge (R&D, technology) long recognised
- Endogenous growth theory combines IRS, knowledge externalities and competitive behaviour in (dynamic optimising) models

More formal endogenous growth models

- Romer (1990), Jones (1995) and others use a model of profit-seeking firms investing in R&D
- A firm's R&D raises its profits, but also has a
 positive externality on other firms' R&D
 productivity (can have competitive behaviour at firm level, but IRS overall)
- Assume $Y = K^{\alpha} (AL_{Y})^{1-\alpha}$
- Labour used either to produce output (L_Y) or technology (L_A)
- As before, *A* is technology (also called 'ideas' or 'knowledge')
- Note total labour supply is $L = L_Y + L_A$

Romer model

Assume
$$\frac{dA}{dt} = \delta L_A^{\lambda} A^{\phi} \qquad \delta > 0$$

This is differential equation. Can *A* have constant growth rate? Answer: depends on parameters ϕ and λ and growth of L_4

Romer (1990) assumed: $\lambda = 1, \phi = 1$ hence $\frac{dA}{dt} = \delta L_A A$ $\Rightarrow \frac{dA}{dt} / A = \delta L_A$ (>0 if some labour allocated to research) If A has positive growth, this will give long run growth in GDP*p.w.* Note that there is a 'scale effect' from L_A

Note '**knife edge**' property of $\phi=1$. If $\phi>1$, growth rate will accelerate over time; if $\phi<1$, growth rate falls.

Jones model (semi-endogenous)

$$\lambda > 0, \phi < 1 \quad \text{(Jones, 1995)}$$
Now $\frac{dA}{dt} = \delta L_A^{\lambda} A^{\phi} \implies \frac{dA}{dt} / A = \frac{\dot{A}}{A} = \frac{\delta L_A^{\lambda} A^{\phi}}{A} = \frac{\delta L_A^{\lambda}}{A^{1-\phi}}$
Can only have positive long run growth if far right term is constant
This only when $\lambda \frac{\dot{L}_A}{L_A} = (1-\phi) \frac{\dot{A}}{A} \quad \text{or} \quad \frac{\dot{A}}{A} = \frac{\lambda}{(1-\phi)} \frac{\dot{L}_A}{L_A}$
In words: growth of technology = constant × labour growth

• No scale effects, no 'knife edge' property, but requires (exogenous) labour force growth hence "semi-endogenous" (see Jones (1999) for discussion)

Human capital – the Lucas model

- Lucas defines human capital as the skill embodied in workers
- Constant number of workers in economy is N
- Each one has a human capital level of h
- Human capital can be used either to produce output (proportion *u*)
- Or to accumulate new human capital (proportion 1-u)
- Human capital grows at a constant rate dh/dt = h(1-u)

Lucas model in detail

- The production of output (Y) is given by $Y = AK^{\alpha} (uhN)^{1-\alpha} h_{a}^{\gamma}$ where 0 < α < 1 and $\gamma \ge 0$
- Lucas assumed that technology (A) was constant
- Note the presence of the extra term $h_{a}{}^{\gamma}\,$ this is defined as the 'average human capital level'
- This allows for external effect of human capital that can also influence other firms, e.g. higher average skills allow workers to communicate better
- Main driver of growth As h grows the effect is to scale up the input of workers N, so raising output Y and raising marginal product of capital K

Creative destruction and firm-level activity

- many endogenous growth models assume profit-seeking firms invest in R&D (ideas, knowledge)
 - Incentives: expected <u>monopoly</u> profits on new product or process. This depends on probability of inventing and, if successful, expected length of monopoly (strength of intellectual property rights e.g. patents)
 - **Cost**: expected labour cost (note that 'cost' depends on productivity, which depends on extent of spillovers)
- models are 'monopolistic competitive' i.e. free entry into R&D ⇒ zero profits (fixed cost of R&D=monopoly profits). 'Creative destruction' since new inventions destroy markets of (some) existing products.
- without 'knowledge spillovers' such firms run into diminishing returns
- such models have **<u>three</u>** potential market failures, which make policy implications unclear

Market failures in R&D growth models

- Appropriability effect (monopoly profits of a new innovation
 < consumer surplus) ⇒ too little R&D
- 2. Creative-destruction, or business stealing, effect (new innovation destroys profits of existing firms), which private innovator ignores \Rightarrow **too much R&D**
- 3. Knowledge spillover effect (each firm's R&D helps reduce costs of others innovations; positive externality) ⇒ too little R&D

The overall outcome depends on parameters and functional form of model

What do we learn from such models?

- Growth of technology via 'knowledge spillovers' vital for economic growth
- Competitive profit-seeking firms can generate investment & growth, but can be market failures
- ('social planner' wants to invest more since spillovers not part of private optimisation)
- Spillovers, clusters, networks, business-university links all potentially vital
- But models too generalised to offer specific policy guidance

Competition and growth

- Endogenous growth models imply greater competition, lower profits, lower incentive to do R&D and lower growth (R&D line shifts down)
- But this conflicts with economists' basic belief that competition is 'good'!
- Theoretical solution
 - Build models that have optimal 'competition'
 - Aghion-Howitt model describes three sector model ("escape from competition" idea)
- Intuitive idea is that 'monopolies' don't innovate

Do 'scale effects' exist

- Romer model implies countries that have more 'labour' in knowledge-sector (e.g. R&D) should grow faster
- Jones argues this not the case (since researchers in US ↑ 5x (1950-90) but growth still ≈2% p.a.
- Hence, Jones claims his semi-endogenous model better fits the 'facts', BUT
 - measurement issues (formal R&D labs increasingly used)
 - 'scale effects' occur via knowledge externalities (these may be regional-, industry-, or network-specific)
 - Kremer (1993) suggests higher population (scale) does increase growth rates over last 1000+ years
- anyhow.... both models show ϕ (the 'knowledge spillover' parameter) is important

Questions for discussion

- 1. What is the 'knife edge' property of endogenous growth models?
- 2. Is more competition good for economic growth?
- 3. Do scale effects mean that China's growth rate will always be high?